In order to bridge the gap between project proposal and delivery of the finished design, the team engaged in several key steps. Initially, the team developed sketches to outline potential solutions in the form of bridges and cross-sections. Ideas which were well-received by the client and the team went on to the modeling phase, where an analytical model of this sketch was created and fine-tuned. This model was meticulously designed and scrutinized, to ensure deflections were as close as possible to the finished structure. With the analytical model finished, fabrication documents were drawn up based on the member length found within. Connections at critical points were identified, designed, and checked to ensure they could withstand the expected loading. Table 1 shows a list of pros and cons the team came up with to help pick an option for the bridge type. Table 2 shows how the team chose the cross section and the material shape.

Figure 3: Arch Bridge

Bridge Type	Pros	Cons
Arch	 Low deflection Potentially lightest Potentially lower build times 	 Angles critical to performance Difficult fabrication process Hard to analyze
Truss	Low deflectionReasonable analysis	 Potentially heavy Complex fabrication process Long assembly time
Beam	 Easy analysis Simple fabrication process Quick assembly 	 Heavy Lacking support at middle span

Table 1: Bridge Type Pros and Cons

Table 2: Cross Section and Material Shape

Cross-Section		<u>Material Shape</u>	
Triangular	 Complex Composite Shape – Difficult to design and manufacture 	Square Tube Steel	 Poor bending resistance Excellent Machineability
Monolithic	• Uses members themselves as cross-section - Inefficient	Circular Pipe	Excellent strength to weightDifficult to work with
Box	• Composite Shape – Easier to analyze and manufacture	Solid Stock	 Strongest bending resistance when loaded on stronger axis Potentially Heavy Good Machinability